最新下载
热门教程
- 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 
pytorch中的nn.ZeroPad2d()零填充函数代码实例
时间:2022-06-25 02:06:11 编辑:袖梨 来源:一聚教程网
本篇文章小编给大家分享一下pytorch中的nn.ZeroPad2d()零填充函数代码实例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
在卷积神经网络中,有使用设置padding的参数,配合卷积步长,可以使得卷积后的特征图尺寸大小不发生改变,那么在手动实现图片或特征图的边界零填充时,常用的函数是nn.ZeroPad2d(),可以指定tensor的四个方向上的填充,比如左边添加1dim、右边添加2dim、上边添加3dim、下边添加4dim,即指定paddin参数为(1,2,3,4),本文中代码设置的是(3,4,5,6)如下:
import torch.nn as nn
import cv2
import torchvision
from torchvision.utils import save_image
def same_padding(img):
    toTensor=torchvision.transforms.ToTensor()
    img=cv2.imread(img)#获得的是(H,W,C)
    img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)#转换成正常的RGB通道
    print("img_cv2 shape:",img.shape)
    img_tensor=toTensor(img)#转成tensor后是(C,H,W)
    print("img_tensor shape:",img_tensor.shape)
    pad=nn.ZeroPad2d(padding=(3,4,5,6))
    img_padding=pad(img_tensor)
    print("img_padding shape:",img_padding.shape)
    save_image(img_padding,'img_padding.jpg')#将tensor格式的图片,直接保存成图片
same_padding('bird.jpg')
代码中需要注意的是,必须要将图片数据转换成tensor数据类型的才可以使用nn.zeroPad2d()函数
为了凸显效果图:我们将设置大尺度的0填充
nn.ZeroPad2d(padding=(100,30,60,60))
知识点扩展:pytorch零填充函数ZeroPad2d作用
pytorch中最常用的零填充函数是nn.ZeroPad2d,也就是对Tensor使用0进行边界填充,我们可以指定tensor的四个方向上的填充数,比如左边添加1dim、右边添加2dim、上边添加3dim、下边添加4dim,即指定paddin参数为(1,2,3,4),如下:
pad = nn.ZeroPad2d(padding=(1, 2, 3, 4))
y = pad(x)
得到的y是x在四个方向上按照(1,2,3,4)进行的补零操作,如下图:
相关文章
- 打个螺丝兑换码能用的有哪些 2025最新有效兑换码汇总 11-04
 - 抓大鹅有效兑换码有哪些 2025最新可用兑换码大全 11-04
 - 密室出逃兑换码能用的有哪些 2025最新有效兑换码大全 11-04
 - 猪了个猪兑换码最新可用 2025最新有效兑换码汇总 11-04
 - 羊了个羊星球兑换码能用的有哪些 2025最新有效兑换码 11-04
 - 塞尔达无双封印战记豪华版多少钱 豪华版包含内容一览 11-04
 
            
                                
                                
                                
                                
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
                                            
                                        
